helping doctors make better decisions

Statistics at Square One

Answers to exercises

1.1 Median 0.71 , range 0.10 to 1.24 , first quartile 0.535 , third quartile $0.84 \mu \mathrm{~mol} / 24 \mathrm{hr}$
2.1 Mean $=2.41, S D=1.27$.
2.2 Mean $=0.697 \mu \mathrm{~mol} / 24 \mathrm{hr}, \mathrm{SD}=0.0214 \mu \mathrm{~mol} / 24 \mathrm{hr}$, range .0 .215 to $1.179 \mu \mathrm{~mol} / 1$
2.3 Points 0.10 and 1.24 . $2 / 40$ or 5%.
$3.1 \mathrm{SE}($ mean $)=0.074 \mu \mathrm{~mol} / 24 \mathrm{hr}$
3.2 A uniform or flat distribution. Population mean 4.5, population SD 2.87 .
3.3 The distribution will be approximately Normal, mean 4.5 and SD 287/ $\sqrt{5}=1.28$.
4.1 The reference range is $12.26-57.74$, and so the observed value of 52 is included in it.
4.295% CI 32.73 to 37.27 .
$5.10 .42 \mathrm{~g} / \mathrm{dl}, \mathrm{z}=3.080 .001<\mathrm{P}<0.01$, difference $=1.3 \mathrm{~g} / \mathrm{dl}, 95 \% \mathrm{Cl} 0.48$ to $2.12 \mathrm{~g} / \mathrm{dl}$.
$5.20 .23 \mathrm{~g} / \mathrm{dl}, \mathrm{P}<0001$.
6.1 $\mathrm{SE}($ percentage $)=2.1 \%$, SE (difference) $=3.7 \%$, difference $=3.4 \% .95 \% \mathrm{CI}-3.9$ to $10.7 \%, \mathrm{z}=0.94, \mathrm{P}=0.35$.
6.2 Yes, the traditional remedy, $\mathrm{z}=2.2, \mathrm{P}=0.028$.
7.137 .5 to 40.5 KA units.
$7.2 \mathrm{t}=2.652$, d.f. $=17,001<\mathrm{P}<0.02$.
$7.30 .56 \mathrm{~g} / \mathrm{dl}, \mathrm{t}=1.243$, d.f. $=20,0.1<\mathrm{P}<05,95 \% \mathrm{Cl}-0.38$ to $1.50 \mathrm{~g} / \mathrm{dl}$.
7.415 days, $\mathrm{t}=1.758$, d.f. $=9,0.1<\mathrm{P}<05,95 \% \mathrm{CI}-4.30$ to 34.30 days.
8.1 Standard $\chi^{2}=23.295$, d.f. $=4, P>0.5$. Trend $\chi^{2}=2.25$, d.f. $=1, P=0.13$.
$8.2 \mathrm{X}^{2}=3.916$, d.f. $=1,0.02<\mathrm{P}<0.05$, difference in rates $9 \%, 95 \% \mathrm{Cl} 0.3$ to 17.9%.
$8.3 \mathrm{X}^{2}=0.931$, d.f. $=1,0.1<\mathrm{P}<0.5$, difference in rates $15 \%, 95 \% \mathrm{CI}-7.7$ to 38%.
$8.4 \mathrm{X}^{2}=8.949$, d.f. $=3,0.02<\mathrm{P}<0.05$. Yes, practice C ; if this is omitted the remaining practices give $\mathrm{X}^{2}=0.241$, d.f. $=2$, $\mathrm{P}>0.5$. (Both χ^{2} tests by quick method.)
9.1 Sickness rate in first department 28\%, in second department 8\%, difference 20% (approximate $95 \% \mathrm{Cl}=-6$ to $45 \%, \mathrm{P}=0.24$ (Fisher's Exact test mid $P)$). P is calculated from $2 \times(0.5 \times 0.173+0.031)$.
10.1 Smaller total $=-30$. No.
10.2 Mann-Whitney statistic $=74$. The group on the new remedy. No.
$11.1 r=-0.848$.
$11.2 \mathrm{rs}=-0.867$.
$11.3 y=36.1-2.34 x$. This means that, on average, for every 1 mile increase in mean distance the attendance rate drops by 2.34%. This can be safely accepted only within the area measured here.
11.4 $\mathrm{SE}=0.39,95 \% \mathrm{CI}=-2.34-2.145 \times 0.39$ to $-2.34+2.145 \times 0.39=-3.1$ to -1.5%.
$12.1 \mathrm{O}_{\mathrm{A}}=6, \mathrm{t}_{\mathrm{A}}=8.06, \mathrm{O}_{\mathrm{B}}=8, \mathrm{E}_{\mathrm{B}}=5.94$. Log rank $\mathrm{X}^{2}=1.24$, d.f. $=1,0.1<\mathrm{P}<0.5$.
12.2 Risk $=0.55,95 \% \mathrm{CI} 0.19$ to 1.60 .
13.1 Matched case control study.
13.2 Cohort study.
13.3 Cross sectional study.
13.4 Randomised controlled trial.
13.5 Quasi experimental design.

